Nucleon structure from high-energy polarized proton-proton collisions

Kieran Boyle (RIKEN BNL Research Center)

Contents

- Proton Structure
- RHIC facility and detectors
- Accessing Spin Structure
 - Transverse Spin
 - Gluon Helicity Distribution (ΔG)
 - Flavor-dependent Sea Quark Helicity Distributions

Nucleon Structure

- Magnetic moment of nucleons indicated there was substructure
 - This has turned out to be quite rich.
- Charge of the nucleon
 - From the quarks, as the gluons are chargeless.
- Momentum
 - Gluons carry about 50%
- Studies of the spin structure has also lead to a rich understanding of the nucleon.

RHIC facility

- √s=62.4–500 GeV
 - Most data at 200 GeV
 - Short 62.4 GeV run in 2006
 - First 500 GeV data earlier this year
- Polarization
 - 57% at 200 GeV
 - ~35% at 500 GeV

- STAR and PHENIX
 - can select transversely or longitudinally polarized beams
- BRAHMS
 - only Transverse
 - was decomissioned after 2006.

Experiments

Kieran Boyle - EINN2009 - September 30, 2009

Research Center

RHIC Performance

Year	√s [GeV]	L [pb ⁻¹]	% Long./Trans.	P [%]	FoM (P ⁴ L)	FoM (P ² L)
2002	200	0.15	0/100	15		0.0034
2003	200	0.35	100/0	27	0.0019	
2004	200	0.12	100/0	40	0.0031	
2005	200	3.6	95/5	49	0.20	0.035
2006	200	10	75/25	55	0.79	0.7
2006	62.4	0.1	80/20	48	0.0042	0.0046
2008	200	5.2	0/100	46		1.1
2009	500	~10	100/0	~35	~0.150	~1.2
2009	200	14	100/0	~55	~1.3	

- From PHENIX. Similar numbers for STAR.
- Significant longitudinal data sets in 2005 and 2006 (and now in 2009)
- Significant transverse data sets in 2006 and 2008
- First 500 GeV run in 2009.

Transverse Spin Structure

C. Aidala gave an overview of transverse spin results from RHIC in the TMD workshop.

Here I just point out a few highlights and recent results.

Transverse Single Spin Asymmetries

- Large single spin transverse spin (~40%) found at low energies
- \rightarrow soft physics effect.
- Remain even at $\sqrt{s}=62.4$ and 200 GeV

pQCD Framework Reasonable?

- At 200 GeV
 - Pion cross sections at both mid and forward rapidities described by NLO pQCD calculation.
- At 62.4 GeV
 - pions are reasonably well described at both mid and forward rapidities
 - NLL may be important

Some (Recent) Surprises

- Large pions asymmetries showed that they do not disappear at large \sqrt{s}
- Measurements of other hadrons have lead to more surprises
 - Large antiproton asymmetry from BRAHMS, but no proton asym.
 - Eta Asymmetry larger than π^0
 - Rising p_T dependence instead of drop

Correlation Measurements

IFF

- Recent Interference Fragmentation Functions (IFF) data from BELLE shows large asymmetries
- BELLE measures IFF², so IFF is large effect

IFF and Transversity

- Transversity must be coupled with another function, such as a FF.
- At PHENIX, due to limited acceptance, IFF is a better choice than Collins FF.
- With current statistical precision, PHENIX results are consistent with zero.

Very Forward Neutron Asymmetry

- Large very forward neutron asymmetry found at RHIC.
- Large when coincidence with less forward charged particles ("minbias")
- p_T dependence
- Not understood how it arrises
 - Challenge to Theorist to explain
- Used to monitor beam polarization direction

Gluon Helicity Distribution (ΔG)

VS.

Helicity Structure

ΔG from DIS

- Unpolarized gluon info came from large Q² and x coverage of DIS measurements (HERA).
- Extract gluon distribution from DGLAP evolution in global fits.
- Polarized DIS measurements currently limited, so constraint from evolution is much weaker.
- How do we get gluon helicity info?
- \rightarrow Go to polarized p+p collider

Accessing ΔG in p+p Collisions

- If $\Delta f = \Delta q$, then we have this from pDIS
- So roughly, we have

$$A_{LL} \cong a_{gg}\Delta g^2 + b_{gq}\Delta g\Delta q + c_{qq}\Delta q^2$$

 where the coefficients a, b and c are dependent on final state observable and event kinematics (η,p_T).

Results

- Many final state probes are studied at RHIC •
 - Jets, π^0 , π^{\pm} , η , Direct photon, etc.
- $A_{LL} = \frac{1}{P_B P_V} \frac{N_{++} RN_{+-}}{N_{++} + RN_{+-}}$ Due to abundant statistics and specialized triggers. • the most significant constraints currently come from π^0 s (PHENIX) and Jets (STAR).

Research Center

Kieran Boyle - EINN2009 - September 30, 2009

 $R = \frac{L_{++}}{L_{+}}$

Constraining ΔG

- DSSV fit world date including p+p for first time.
 - PRL101:072001,2008
 - arXiv:0904.3821
- RHIC data offer significant constraint at 0.05<x<0.2.
- Large uncertainty remains below RHIC x range.
- Understanding full uncertainties are important.

Extending the constraint

- Obviously, remeasure π⁰ and jet A_{LL} with higher statistics
- Other processes
 - relevant with more luminosity
 - different sensitivity to ΔG , such as direct photon production
- Extending x range
- Narrow the sensitivity to $\Delta G(x)$
 - Correlation measurements

Direct Photon

- Example of a process with a different constraint on ΔG
 - Direct photon

- Quark-Gluon Compton scattering dominates (~80%)
- A^{direct γ}_{LL} is essentially linear in ΔG .
- Can give leading order constraint of $\Delta G/G$
 - (R. Bennett's thesis, using PHENIX date from 2005 and 2006.)

Extending x range

- Current measurements constrain ∆G in the x range [0.02,0.3]
- Need to constrain ΔG over wide x range
 - \rightarrow Expand the x range

Research Center

- √s=62.4 GeV → higher x (short run in 2006)
- √s=500 GeV → lower x (first run earlier this year)
- Forward rapidity \rightarrow lower x

Narrowing x Sensitivity

Research Center

Sea Quark Helicity Structure: Measuring A_L of W bosons

Helicity Structure

Sea Quark Helicity Distributions

- How can we get flavor dependent sea quark info?
 - SIDIS
 - Current constraints come from SIDIS
 - Relies on the favored fragmentation of the struck quark
 - At RHIC, W boson production in polarized p+p collisions is sensitive to specific combinations of quarks.
 - $u\overline{d} \rightarrow W^+$, $\overline{u}d \rightarrow W^-$
 - W boson production via V-A coupling
 - \rightarrow Perfect spin separation

- Measure parity violating asymmetry in W boson production
 - Maximal violation of parity in W production can lead to large asymmetries.

$$A_{L}^{W^{+}} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} \propto \frac{\Delta \bar{d}(x_{1})u(x_{2}) - \Delta u(x_{1})\bar{d}(x_{2})}{\Delta \bar{d}(x_{1})u(x_{2}) + \Delta u(x_{1})\bar{d}(x_{2})}$$

• Similar case for W⁻ with d and u.

Coverage of Lepton Rapidity

- Sensitivity to sea quark distributions vary with η of the measured lepton.
- Lepton decay kinematics reduce some sensitivity.

Upgrades for W Physics

- Both STAR and PHENIX can measure W->e near midrapidity
 - Analysis of first 500 GeV data in 2009 is underway!
- What about larger rapidities?
 - Both detectors are currently working on upgrades.

End Cap EMCal can tag electron. TPC does not give enough points for charge sign measurement

→Forward GEM Tracker

Identification from MUID and charge sign/ momentum from MUTr.

BUT, trigger is dominated by low momentum particles

- \rightarrow Resistive Plate Chambers
- \rightarrow 5% of MUTr signal into trigger circuit

Use bend in track to trigger high mom. muon

Conclusions

- The RHIC spin program is increasing our knowledge of the spin structure of the nucleon.
- Transverse Spin Distributions
 - Results from RHIC show that the unexpectedly large transverse spin asymmetries seen at lower \sqrt{s} remain at 62.4 and 200 GeV.
 - Many of these results are a challenge to theory.
- Gluon Helicity Distribution
 - Measurements of A_{LL} at RHIC offer a significant constraint of ΔG in the range 0.02<x<0.3, indicating a small contribution in this region.
 - Due to the limited x range, and the smearing of x in the current measurements, it is still too early to state $\Delta G=0$.
 - Measurements at \sqrt{s} =500 GeV will push towards lower x.
 - Jet and particle correlations will reduce smearing in x between $\ensuremath{p_{\mathsf{T}}}$ bins.
- Sea Quark Helicity Distributions
 - First 500 GeV run is complete, and analysis of W cross section and $\rm A_{\rm L}$ is underway.
 - Upgrades will expand the sensitivity to these distributions.

BACKUPS

Sensitivity for A^W_L

• 300 pb⁻¹, 60% pol

BRAHMS detector

PHENIX detector

- 2 central spectrometers
 - Track charged particles and detect electromagnetic processes
- 2 forward muon spectrometers
 Identify and track muons
- 2 forward calorimeters (as of 2007)
 - Measure forward pions, etas
- **Relative Luminosity**
 - Beam-Beam Counter (BBC)
 - Zero-Degree Calorimeter (ZDC)

STAR detector

Research Center

$A_N(\pi)$ at 4 deg. at 200 GeV

IFF: Definition of Vectors and Angles

Bacchetta and Radici, PRD70, 094032 (2004)

Measuring A₁₁

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{P_b P_y} \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}}$$

- Helicity Dependent Particle Yields
 - π^0 , π^+ , π^- , γ , η , etc
- (Local) Polarimetry
- Relative Luminosity (R=L₊₊/L₊)
- A_{LL}

